
IDENTIFYING HEAT- AND MASS-TRANSFER CONSTANTS 

FROM MEASUREMENTS UNDER TRANSIENT CONDITIONS 

V. I. Zhuk, S. A. Ii'in, 
and D. N. Chubarov 

UDC 536.2.08 

Explicit formulas are derived for determining heat- and mass-transfer constants 
from measurements of transient temperatures (concentrations) in processes which 
can be described by a general linear parabolic equation. 

Many physical transfer processes can be approximately described by the linear parabolic 
equation 

1 0 T ( x ,  t) _ 02T (x, t) OT (x, t) 
a Ol Ox 2 + ~ef Ox + %fT (x, t), (1) 

where T is a physical variable characterizinE the process in question; the subscript "ef" 
denotes the effective, i.e., the averaged, values of the coefficients in Eq. (i) which in the 
general case are dependent on T. For example, in examining the propagation of heat in a 
thin rod with heat transfer on a lateral surface, the coefficient Yef is proportional to 
the ratio of the heat transfer coefficient and the thermal conductivity [i]. In the diffu- 
sion of an unstable gas or diffusion in the presence of chain reactions [2], Yef is the ratio 
of the multiplication factor B* to the diffusion coefficient D. 

We will formulate the problem of identification as the problem of finding the unknown 
coefficients ~, B, and y on the basis of measurements of transient values of the variable T. 
Here, it is assumed that the measurements must be made at a sufficiently great number of 
points in space, for the sake of definiteness of the problem. As is known from the liter- 
ature, the traditional approach of finding the above constants consists of comparing the 
specific solution of Eq. (i) obtained on the basis by known values of T (or 3T/~x) at the 
boundaries of a certain region with measurements of T at some point inside this region. 
Such an approach, however, does not generally permit explicit representation of the sought 
parameters directly through the measurements because the solution of Eq. (i) is usually 
expressed through transcendental functions, the arguments of which include these parameters. 
A method was proposed in [3, 4] for constructing explicit relations to determine thermal 
diffusivity and thermal conductivity which might be extended to the present case. 

Using the integral Laplace transform, we may write the solution of Eq. (i) as follows: 

xj 4 . . . .  ~§ [ ( - - + §  1 , /  [~2 s 
4 --~'+ T )  ' 

(2) 

where the constants A and B are determined on the basis of the character of the interaction 
of the bounding surfaces with the environment. 

Let the conditions of the experiment permit description of an actual process by means 
of Eq. (i) for a semiinfinite region (model of semiinfinite body). Then the relationship 
between the values of T at the points x = 0 and x = ~ in the image space has the form 

V 4 -7-  8 �9 (3) 

It follows from (3) that 
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where the differentiation is performed with respect to the transform parameter s. 

ing (4) by ~@ s 

Multiply- 

and again differentiating with respect to s, we obtain 

T(6, s) -4 --7q- a = 4 a  z / [B z s 

]/ /  4 --?+--a 

(5) 

From (5) we have 

[qo'T (6, s) -- 2qDT' (6, s)] -- 7 a q- s q- ~ 4a 

where~ =T'(O, s)T(6, s) -- T'(6, s)T(O, s). 

We will designate (~/4- y)a=z, Tz(s)=T(O, s), T~(s)=T(6, 

I ~ 
z~ (s) + s,~ (s) + T q~ (s) T~ (s) = -7$a q~ (s), 

where 

(s) = q~' (s) T2 (s) - -  2{p (s) T~ (s); % (s) = T~ (s) T 1 (s). 

A f t e r  c h a n g i n g  f rom (7) b a c k  i n t o  t h e  s p a c e  o f  t h e  o r i g i n a l s ,  we o b t a i n  
8~ 

~ (r~, T~) - -  ,~  (r , ,  T=) 
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T s(6, s) T{0, s), 

s) , then 

(6) 

(7) 

(8)  

(9) 

Here, we find the functions @, ~, and ~ from the formulas: 

t 

% (t) = 5 T2 
0 

t 

, (t) = .f 
0 

q~ (~1 = S 
0 

T 

(t - -  r) 5 T2 (T - -  O) T i (0) dOdr, 
0 

(2 / - -  3r) cp ('~) T2 (t - -  "c) d'~, 

(~ -- 20] T 1 (0) T 2 (r 7-- 0) dO, 

~1 (t) = .I ( 2 / - -  3r) ~o' (~) T2 (t ~) dr  - -  .t ~ (~) T~ (t - -  r) dr. 
0 2 o 

Since it is assumed that the parameters a, B, y, and z are constant within the range of T 
realized in the experiment, it follows from (9) that 

from which 

-~a  q~i (t) - *i  (t) , (t) - -  7 7 / q ~  (t) - ,~ (t) (t) = o, 

~2 ~ $ -  $15' 
4 ~i~-- ~' 

The f u n c t i o n s  ~ ,  ~T, and q0l, a c c o r d i n g l y ,  h a v e  t h e  fo rms  

~; (t) = . I  T~(t-- '~) . T2(~--O) .T;  (O)dOdT, 
0 0 

t 

~' (t) = ( ( 2 / - -  3"~) q)' (r) T 2 (l - -  "~) d'c - -  .f qo (-Q T~ (l - -  "c) d'c, 

(io) 
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cp' ('~) ---- .[ (T - -  20)  T.~ (~ - -  0) T;  (0) dO - -  ; T 2 (~: - -  0) T 1 (0) dO, 
0 0 

qf' ('~) = .f ('v -- 20) T; ('~ -- 0) T; (0) dO. 
O 

After the parameter a is determined from Eq. (i0), the parameter z can be found from Eq. 
(9). 

To individually find 13 and y, we return to (3). In the space of the originals, (3) 
has the form 

Fo 

2 2 ],#---~ T1 (Fo) exp -- (Fo -- 1~o) -]- 4 (Fo -- F'o) 
0 

where Fo=aT/62" Fo=at/62 

Fo 

where 

Since a, 

From (ii) we obtain 

[~= 2 ln[r (12) 
6 

(Fo) - 2 ]/-~- T~ (fro) exp -- a T F o--  Fo 
o 

z, and 13 are now known, the value of y can be ca lcula ted  from the formula 

(13) 

V • {In [q5 (Fo)/T~ (Fo)l}Z/6 z -- ~ (14) a 

In certain practical cases, transfer processes can be described by an equation of type 
(i) for a plane layer of thickness ~ (model of a flat infinite plate). Then the relation- 
ship between the values of T at three points through the thickness has the following form 
in the image space 

T(x, s)=T(6, s) exp[-~-(6--x)] sh V f q ~  x/sh ] / / zq  s 6 + 

x) sh ~ /  Z ~ S (6 _ x)/sh p/-z ~ 8 6, ( +T(0 ,  s) exp \ - - 2  (15) 

where 6 is the distance between the extreme measurement points. 

If x=6/2, then 

T(6, s )=  IT(6, s) exp (-~-- 61) -}- T (0, s)exp (--~"2 61)1/(2ch ~ / z + ~  6 1 ) , a  (16) 

where 61 = 6/2. The parameters a, 13, and y are most easily determined if measurements of T 
in two different realizations are available. It follows from (16) that 

Ti(6, s)exp ( 2~--~ 61] q-T,(0, s) exp ( ~ 61) Ti(6, s)exp (2~-~ - 61)q-Tj(0, s) exp ( 6 61 ) 
2 (17) 

T~ (81, s) Tj (81, s) 

where the subscripts i and j pertain to the different realizations. Let us designate 

exp (+ 61)= b, so that we obtain from (17) 

b2 [Ti(6, s)T$(61, s)--T~(61, s)Tj(6, s)]=Tj(O, s)T~(61, s)--Ti(0,  s)Tj(61, s). (18) 

After changing back to the originals, we determine parameter B from the expression 
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AT a ~Z~ ? ~ Fig. l. Results of calculation 

i o ~ I of the coefficients of the model 
problem: I, 2) temperatures at 

~ ~ i ~ two points of the specimen (K) 
~..! ~ ...... /00 (distance between measurement 5oo~- s \ 

�9 ~ m m ~  i 

i ~ \ ~ L points i0 mm); 3, 4, 5) calculated 
/" 7 ~ 7 ~  values of a (m21sec), Y (m-=), / / I C L  ~ , ~ . i  and B (m-l) ; 6, 7) adopted values 

~ ~ s ~4 ^ of a, y (value of B =0 assumed). 

2 lnb; b=I[l(t)/f~(t)l 1/2  , ~ :  61 (19) 

where 

[1 (t) : S [Tj (0, t - -  T) T i (~i, %) - -  Ti (0, t - -  T) T j  (~1, T)] d%; 
o 

t 
/2(t): ~ [Tj(61, ~)Ti(6, t--~)--Tj(6, t--~)Ti(61, ~)]d~. 

0 

We can proceed in as follows to determine the parameters a and y. Let us designate the 
following in a certain realization, such as the i-th 

TI(O= [Ti(6' Oexp (~-61) @ Ti(O' l) exp (-- ~--~- T~(~)=TI(61, t). (20) 

From (16) we have 

Tl(s) _ ch l / z +  S 61. (21) T~(s) V a 

Proceeding exactly in this manner, as in the case of a semiinfinite body, we obtain relations 
of the type (9) and (i0) to determine a and z. Since we have found B, a, and z, we can 
easily calculate the value of the parameter y. 

Thus, using the relations obtained above, we can express the transfer constants in 
Eq. (1) explicitly through measurements of the transient function T. The integral combina- 
tions entering into the theoretical formulas are easily calculated on a computer and do not 
require the construction of complicated algorithms. Figure 1 shows the results of the cal- 
culation of a model problem. As the "experimental" values of the function T, we used the 
results of calculation of a straightforward problem of heat conduction: the temperatures 
at two points of a semiinfinite body, with heat exchange on the lateral surfaces and heating 
from the end. Here, the temperature of the end was assumed to be a constant 2000~ the 
ambient temperature was 273~ the thermal diffusivity a=0.04 m2/h, the thermal conductivity 
h =40 W/m'K, the heat-transfer coefficient a=1000 W/m2"K, the ratio of the perimeter to 
the cross-sectional area 333 m -~, y=8333 m -2, and B=0. It follows from the results shown 
that the calculated values of a, ~, and y converge fairly quickly with the values adopted 
in solving the above problem. 

It should be noted that, apart from directly using these formulas to determine transfer 
constants in processes where the contribution of the physical factors associated with these 
constants is known for certain to be substantial, the formulas can in fact be used to iden- 
tify an operator of type (i) itself. If data on the measurement error are available, the set: 
of calculated values of the constants a, B, and u (for a fixed number of time intervals dur- 
ing the realization) can be used, on the basis of a given statistical criterion, to con- 
struct an algorithm to check both the linearity of the operator and the amount by which the 
individual terms of Eq. (i) differ from zero, i.e., within the limits of accuracy of the 
system of measurements used, information can be obtained regarding the significance of a 
given physical factor in the process under study. 
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NOTATION 

T, characteristic function of a process (temperature, concentration); x, coordinate; 
, d 6 ~i, istance between measurement points~ a, ~, y, transfer constants~ Fo, Fo, Fourier 

numbers; t, T, e, time. 
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THEORY OF A THERMAL DIFFUSION 

APPARATUS WITH TRANSVERSE FLOWS 

A. V. Suvorov and G. D. Rabinovich UDC 621.039.341.6 

The article discusses a continuous thermal diffusion apparatus in which supply 
and removal take place at the ends of the separating slit. The dependence of 
the shift in concentration on the parameters of the apparatus, the properties 
of the mixture, and the amount of fluid removed is determined. 

All known types of thermodiffusion cascades of constant, stepped, or ideal profile are 
characterized by the fact that the mixture being separated moves through elements forming a 
given cascade. The scheme for connecting thermodiffusion columns proposed by Jones and 
Frazier [i, 2] and shown schematically in Fig. la is distinguished by the fact that the mix- 
ture is pumped outside the separating part of the column. As can be seen from the figure, 
the mixture being separated is delivered to the top and bottom ends of the outermost columns 
and moves along the respective ends until it leaves the cascade. A theory of such a cascade 
proposed in [3] was constructed on simplified model representations applying to the separa- 
tion of petroleum products. In connection with the latter, the relations obtained here are 
approximate. 

The present work attempts to avoid the above problems and is based on the use of classi- 
cal theory [4]. 

A battery of columns (Fig. la) may be represented in an idealized variant as a plane 
column, the top and bottom parts of which contain channels 2 (indicated by the dashed line 
in Fig. ib, c) connected with the separating part of the apparatus i. The apparatus is divided 
into a series of narrow columns by vertical barriers 3. It is assumed that diffusion along 
the x axis in these columns may be ignored, which allows us to regard the problem as being 
unidimensional within each column. The same assumption is made with regard to diffusion in 
the top and bottom channels, which is fully justified given the fairly high flow rates typi- 
cal of the chosen operating regime. It is further assumed that the convective flow entering 
the channels 2 from the region 1 is ideally mixed along the z axis with the flows passing 
through the channels. 

In any vertical cross section of the apparatus being examined, transfer in the case of 
a binary mixture is determined by the formula 
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